
Adaptive Volumetric Streaming: Optimizing and Measuring a
Multi-Camera Streaming Pipeline

Kevin Cui
Cornell University
Ithaca, New York
kc734@cornell.edu

Jiqing Wen
METEOR Studio
Tempe, Arizona
jwen31@asu.edu

Robert LiKamWa
METEOR Studio
Tempe, Arizona
likamwa@asu.edu

Figure 1: Azure Kinect camera body tracking, depth and color view, 2023.

ABSTRACT
Volumetric streaming, unlike traditional 2-dimensional video, en-
ables users 6 degrees of freedom to explore a scene, providing myr-
iad virtual reality applications in telecommunications, healthcare,
and education. The increased viewport mobility, however, comes at
the cost of wide bandwidth requirements and high compute power
expenses. Therefore to make virtual and augmented reality appli-
cations more accessible for public consumption, it is imperative
reduce the memory and energy needs of volumetric streaming.

As such, we implement a volumetric streaming pipeline and
investigate optimizations through body tracking video region-of-
interest filters. More concretely, we integrate two traditional com-
pression techniques, temporal and spatial downsampling, and study
their effects on throughput, latency, and quality of experience mea-
surements of a streaming system. Evaluating our pipeline, we find
that temporal downsampling decreases data consumption and spa-
tial downsampling decreases execution time. While we found limi-
tations with end-to-end latency, the success of pose-based adaptive
filters implies the feasibility of a volumetric streaming system gen-
erating point cloud visualizations in real-time. This research paves
the way for more extensive study of volumetric streaming and
3-dimensional compression techniques.

KEYWORDS
volumetric streaming, augmented reality, image processing, metrics

1 INTRODUCTION
1.1 Motivation
With developments of Oculus Quest over the past several years
and the most recent announcement of the Apple Vision Pro, vir-
tual reality (VR) and augmented reality (AR) technology is fresh in
the public mind. Given its novelty, there are many possible appli-
cations for VR/AR, including gaming, healthcare, and education.
The Augmented Coach project, designed by Arizona State Univer-
sity’s METEOR Studio, is one such application, focusing on athletic
performance analytics. More specifically, Augmented Coach is a
sports training platform that allows players to receive real-time
feedback during exercises from coaches who can remotely view
and annotate their body movements in a 3D space [13]. The 360
degree viewpoint and low latency allow for on-the-fly feedback,
which can not only expedite athletic improvement but also make
coaching more accessible to users in remote areas. The latter point



Cui et al.

of increasing equitability is a key motivation in the continued de-
velopment of Augmented Coach, and specifically the optimization
of its underlying streaming framework.

Like other VR streaming applications, Augmented Coach is built
upon volumetric video capture or volumetric streaming. As Bo Han
et al. describes, volumetric video is "truly 3D, allowing six degrees
of freedom (6DoF) movement for their viewers" [2]. Consequently
however, volumetric streaming requires an extremely high bit rate
as voxel chunks must be continuously loaded from a 3-dimensional
scene. Part of the challenge comes from stitching together depth
and color video streams from multiple cameras to create point
clouds for an immersive view; simply transmitting high-quality
video streams is half the battle, as Matroska (.mkv) files, which are
commonly used for combined color and depth streams, are almost
cartoonishly large. Indeed, a single stream from an Azure Kinect
camera recorded for one minute is upwards of 1-2 MB.

Thus, on a network with sufficiently wide bandwidth and a com-
puter with sufficiently high processing power, volumetric video
becomes feasible. If the streams are transformed into point cloud
renderings before they are transmitted over a server, the data load
reduces further. Employing such ideas, there has been significant
progress in VR streaming technology in the past decade (e.g. VR-
Chat). Still in the case of Augmented Coach, continuously live-
streaming high resolution video is a focal point yet to be solved
efficiently, so optimizing the volumetric streaming pipeline is essen-
tial. Ultimately, our desire is to make VR/AR technologies a readily
accessible tool for developers and end-users. Hence, reducing the
computational expense of volumetric streaming is vital.

1.2 Our contributions
Our research explores different techniques for optimizing the vol-
umetric streaming pipeline. The methodology builds off an estab-
lished system that connects Azure Kinect cameras to a Unity client
via WebRTC connection. In the Unity client, a separate rendering
pipeline is employed to generate point cloud representations from
color and depth input. Having this system already in place, the
objectives and associated achievements with this research relate
to server-side optimizations of an encoded video stream. Notably,
temporal downsampling, and spatial downsampling are integrated
into the system, using adaptive body tracking filters as a framework
and the work of Kodukula et al. [3] as a springboard.

Moreover, we measure the effectiveness of these improvements
using relevant metrics. For each added feature, and combination
with other features, we test the throughput, latency, and quality of
experience (QoE). Since the pipeline already had associated memory
and computational requirements, metric measurement was focused
on the efficiency of new improvements. However, end-to-end la-
tency and upload bandwidth were still used, to a lesser extent, in
understanding the benefit of the implemented features.

In summary, our systems research makes several contributions:

• First, we develop twomain strategies for improving a Azure
Kinect to Unity volumetric streaming system, based loosely
on the work of Kodukula et. al [3] and image compression
principles. These strategies are temporal downsampling
and spatial downsampling, both framed by adaptive body
tracking filters.

• Second, we establish the feasibility of such a system for
use in VR technology and widespread consumption. Using
throughput, latency, and QoE measurements, we quantita-
tively determine effects of the strategies and realistically
feasibility to VR/AR integration.

2 BACKGROUND/RELATEDWORK
Volumetric Streaming. Volumetric video is a relatively new form
of multimedia, with 3D, 6DoF video being notably different from
traditional formats. With the immersive experience, however, there
is a significant requirement for bit-rate, and ViVo [2], a visibility
aware VV streaming system for mobile systems, and CaV3 [5], a
cache assisted viewport adaptive system, are proposed efficient
VV capture pipelines. Kodukula et al. [3] also suggests compres-
sion techniques using multi-resolution systems that enhance or
downgrade certain video regions. Further, Liu and Zhong et al. [6]
explored a remote rendering approach towards VR streaming. Fu-
rion [4] employs a similar split-rendering technique to optimize VR
streaming. These are mostly theoretical studies, however, and this
research will tackle the implementation of a volumetric streaming
system and proposed optimizations [12].
Augmented Coach is an AR sports coaching platform developed
by the Meteor Studio at Arizona State University. Its novelty lies
in the ability for coaches to analyze athletes in a 3D augmented
space, allowing for better spatiotemporal contextualization of ath-
letic movement compared to a traditional 2D representation [13].
Channar, Dbeis, and Richards [1] conducted user studies on usabil-
ity of the framework. Relating to our research, our ultimate aim is
to connect a streaming pipeline to Augmented Coach for systems
testing of live-streaming capabilities.
Viewport Prediction. A key technique for seamless VR/AR expe-
rience involves buffering the video chunks that the user will view
next. ViVo [2] tries linear regression and multilayer perceptron
approaches towards predicting future user viewports. The CaV3
architecture [5] builds upon this using gaze and current user inertia
as features for a transformer-based approach of viewport prediction.
Further, research on trajectory-based prediction [10] and cluster-
based prediction [9] are suggested means to accurately predict user
viewports.
Data compression and more specifically video compression is
important in reducing the throughput of media streams. One of
the most prevalent techniques is spatial compression [? ]. In this,
a static image is divided into chunks that are individually trans-
formed using algorithms like the Discrete Cosine Transform (DCT)
or wavelet transform. Another technique is temporal compression,
in which consecutive frames are analyzed for change [? ]. If a re-
gion is static, instructions are sent to maintain the current output,
thereby reducing the total quantity of data needing to be transmit-
ted. There are many other compression techniques including Joint
Photographic Experts Group (JPEG), Motion JPEG, VP8, and H.264
which are all algorithmically designed [? ]. There has also been re-
cent work by Google on transformer-based video compression [7],
and this research takes inspiration from all compression techniques
in developing parallel compression techniques for volumetric video.
Microsoft Azure Kinect. Finding sensible cameras are a crucial
part in developing a streaming pipeline. Microsoft’s Azure Kinect



Adaptive Volumetric Streaming: Optimizing and Measuring a Multi-Camera Streaming Pipeline

Figure 2: Volumetric streaming pipeline, end-to-end from camera to end-client

is a relatively robust piece of hardware that can simultaneously
capture depth and color streams at variable resolutions [8, 11]. Us-
ing time-of-flight (ToF) sensors, the depth camera can record in
4 field-of-view (FOV) modes: NFOV unbinned (640x576), NFOV
2x2 binned (320x288), WFOV 2x2 binned (512x512), and WFOV
unbinned (1024x1024) [11]. The RGB camera, recording in MJPEG,
YUY2, or NV12 formats, similarly has many resolution modes, from
1280x720 (16:9 aspect ratio) to 4096x3072 (4:3 aspect ratio) [11].
The wide array of features enabled preliminary spec testing for our
research. As of this paper’s submission, metrics relating to these
measures have yet to be thoroughly explored.

3 METHODOLOGY
3.1 Systems overview
The pipeline can be broken down into a sequence of processes as
seen in Figure 2. Before any camera data can be transmitted, the
server and client must be initialized. Then, output from Azure
Kinect cameras can be streamed through an image processing
pipeline that applies a selection of our implemented downsam-
pling techniques and encodes video data to be sent to a remote
server. Once the client is connected to the server, the encoded data
is piped into Unity where it is interpreted as color and depth tex-
tures. These rendered textures are and can be fed into other Unity
pipelines, including a point cloud renderer, and the output is ul-
timately displayed to an end-user wearing a headset or directly
monitoring the Unity client.

3.2 Pipeline implementation
Having now a high-level overview of the volumetric streaming
pipeline, let us go into the specifics how each process is imple-
mented and how they function. We start with step zero: initializing
the server and client network. We implemented Flask servers in
Python that are listening to different local ports, and before starting
the camera stream, we spin them up and have these servers online
and ready to receive and transmit data. In our implementation, we
have three Flask servers running concurrently (one for each cam-
era), and they are connected to local ports 5005, 11010, and 15015.
Simultaneous to our initialization of the servers, we start up the
Unity project and register the client to listen for requests on any
of the aforementioned ports. The Unity to server connection is via
WebRTC and Unity’s built-in streaming capabilities. It is important
to note that the client does not have to be on the same machine
as the server, but simply on the same broadband network with a
discovereable IP.

Once the network connection is established, evident with client
registration POST requests, we can commence with Azure Kinect
video streaming. This process is fairly straightforward as we simply
call an executable that toggles Kinect camera parameters (like FoV
dimensions, frame rate, color image format, connecting port, etc.)
and image compression options. This executable also allows for
.mkv video playback, in addition to Kinect streaming, which can
be helpful if there are hardware access limitations.

When the executable launches the camera, it immediately con-
nects to the indicated port (either 5005, 11010, or 15015), using



Cui et al.

SipSorcery. If no image processing or downsampling specifications
are selected, the color and depth video streams, encoded with the
VP8 protocol, are sent directly to the server. If, however, spatial or
temporal downsampling with an adaptive filter is chosen, then the
system’s attached GPU will use runtimes from the Azure Kinect
Body Tracking SDK to pre-process the image before encoding. It is
at this step, transmission between GPU to server, that the bulk of
our optimization research is implemented. Additionally, we would
like to note that the output stream is completely wireless from
this point onward, and we only need connected Kinect cameras to
upload to a streaming client.

Finally, after the compressed video data is streamed through
the specified port and available on the Flask server, a GET request
from Unity is sent, allowing for the data to come through and be
processed by additional pipelines in Unity for end-user consump-
tion. This final step of connection is triggered by specific key bind-
ings, and given the capacity for multiple servers for multi-camera
streaming, there is one event per camera stream. It is all handled by
WebRTC. For a summary of the specifications used in the pipeline,
see Table 1.

The system as a whole can be thought of as parallel pipelines for
each individual Azure Kinect camera. It is all handled by the same
web transport and protocol, but there is a unique port, server, and
receiving client for each video stream. For these reasons, we found
it helpful to connect each Kinect server-client pipeline individually
instead of progressing concurrently step-wise for a multi-camera
streaming system. Given its complexity, however, the resulting
color/depth stream and point cloud rendering output in Unity is
simple.

Table 1: Primary specifications of pipeline components (de-
termined via preliminary testing though other options could
be tried)

Component Specification

Camera(s) Azure Kinect
Depth resolution 320 x 288
Color resolution 1280 x 720
Color image format ColorBGRA32
Frame rate 30 fps
Web Transport SIPSorcery, WebRTC
Connection port(s) localhost:5005 (primary), 11010, 15015
GPU nVidia GeForce RTX 3060 Ti
Server type Flask
Client Unity (v2021.3.25f1)

3.3 Video compression techniques
Transmitting the video stream directly from the Kinect cameras to a
server is technically possible but not a good idea due to the high bit
rate required for such transport. Therefore, we integrated several
video compression techniques based on traditional 2D principles.
Essentially, we identified regions of interest (ROI) that maintained
continuous high-resolution throughput and then down-sampled

non-ROI pixel regions. There were two main approaches to down-
sampling: temporal and spatial. Regardless of the specific down-
sampling technique, however, the manipulations were framed by
adaptive filters, with three possibilities in total.

One was a skeleton tracker provided by the Azure Kinect Body
Tracking SDK that drew bounding boxes around all regions in a
frame containing a human body. The other main filter was a head
tracker we developed based on joint data (specifically shoulder
points, nose, and chest) supplemented by the Body Tracking SDK
that drew bounding boxes all supposed "heads" in a region. For
use as a control, we also developed a "none" filter that treate the
entire frame as a region of interest, and therefore did not perform
any downsampling. While we did preliminary testing of the im-
pact of skeleton, head, and none filters on streaming performance,
we primarily used them to contextualize the temporal and spatial
down-sampling effects.

Figure 3: Comparison of different framing with adaptive
filters, including the default skeleton model provided by the
Azure Kinect Body Tracking SDK, a head tracking model,
and control "None" filter model.

Temporal downsampling compresses video by reducing the fre-
quency of data transmission. After applying an adaptive filter to
generate regions of interest in the video frame, we can use temporal
downsampling to change the refresh rate of the background. Instead
of updating the video at the same frequency as the ROIs, using a
variable background refresh rate enables reliable data compression.
In this research, we toggled the temporal downsampling from 1
frame per second (fps) to 30 fps, or as fast as the pixel ROI was being
updated. The actual implementation of temporal downsampling
was through a systems timer that executed a background refresh at
a selected frequency.

Figure 4: Temporal downsampling background refresh rate
comparison of 1 fps vs. 30 fps updating; increased temporal
downsampling or a lower refresh rate increases the visual
choppiness of playback.

Spatial downsamplingworks by reducing the complexityof certain
pixel regions; essentially, it is acting like a background blur. Similar



Adaptive Volumetric Streaming: Optimizing and Measuring a Multi-Camera Streaming Pipeline

to temporal downsampling, we applied spatial downsampling only
to non-ROIs in a video frame. However, unlike temporal downsam-
pling, with spatial downsampling, data is being transmitted at the
same frequency, merely at a lower resolution. We implemented
spatial downsampling using a non-sliding NxN box blur algorithm
that used the average of box-based background pixels to create a
lower-resolution, and therefore more compressible, video stream.
To ensure the dropoff in user experience was not too noticeable,
our system only allows up to 4x4 pixel regions for spatial down-
sampling, although it would have been possible to extend this into
higher dimensions.

Figure 5: Spatial downsampling background blur compari-
son of 1x1, 4x4, and 16x16 adaptations; expectedly, higher
spatial downsampling (increased background blur blocks)
diminishes the image resolution.

3.4 Metrics
There are several metrics relevant to themeasurement of our stream-
ing pipeline. Firstly, we care about the memory usage or footprint
of the video data. Consequently, we have a bandwidth or, more
accurately, throughput metric. This is all contextualized by ex-
ecution time, so we define throughput as simply data processed
per unit time. Our findings primarily concern the throughput of
individual processes, most notably the GPU to server data trans-
mission because that was what our improvements were targeting,
but we also observed upload throughput data, or more aptly upload
bandwidth requirements, as a sanity check.

Another key metric we use for studying the pipeline is latency.
Latency relates to execution speed, and it is more specifically as the
lag time between when an instruction is sent and when it actually
finishes executing. Similar to throughput, we can measure latency
of individual tasks, which we focus on in the systems paper, but
we can also measure end-to-end latency of the full pipeline. Both
approaches are helpful in quantifying the impact of our improve-
ments.

One final metric that we consider is quality of experience
(QoE). This is fairly subjective, and we define it as a "what looks
good" or "what is acceptable" statistic. Without thorough user study,
QoE was not heavily used; rather it was simply suggested as an-
other dimension to supplement our quantitative results.

4 EXPERIMENTAL RESULTS
In testing the system, combinations of one or multi-camera stream-
ing systems were set up. Specifically, temporal downsampling was
tested from 1 fps refresh rate up to 30 fps, with 5 fps increments;
spatial downsampling was tested from 1x1 box blur up to 4x4, with
2x2 as the only intermediary. These combinations of refresh rate
and blur factor were paired with the three adaptive filters: skele-
ton, head, and none (with none serving as a control for no data
compression). Following are the main takeaways from systems mea-
surements - corresponding figures are provided in the appendix.

4.1 Temporal downsampling decreases
throughput

We found that an increase in temporal downsampling decreased
the average throughput for GPU-server data data transmission.
This trend is evident with both single Kinect and multi-camera
streaming. Additionally, both novel adaptive filters (skeleton and
head) had similarly trends. As expected, the control filter, which
treated the entire frame as a region of interest, and therefore did not
employ temporal downsampling, showed no trend with change in
refresh rate. Considering the effects on latency, we observed little
to no trend in that regard with changes in temporal downsampling.

This result is expected and promising; with temporal downsam-
pling, data should be sent at a lower frequency, and therefore aver-
age throughput should decrease. The GPU is still transmitting the
same quality of data but less times per second, so we are effectively
flattening the curve by spacing out encoded data transmission. This
in turn allows for a slower processor as it has more time in between
update tasks to execute image processing and encoding.

4.2 Spatial downsampling decreases latency
With spatial downsampling, we observed noticeable trends with
latency; specifically there was a negative relationship between
spatial downsampling and encoding task latency. Put another way,
this means that as the background blur is increased, the time it takes
to an encoded video stream decreases. Like temporal downsampling,
the trends for single Kinect and multi-camera streaming were quite
similar, and again the skeleton and head tracking filters showed
correlation, unlike the none filter. More quantitatively, there was
nearly a 2 times reduction in latency from 1x to 4x blur while
minimal change in QoE.

These results confirm our belief that decreasing the background
complexity lends for faster data transmission. With spatial down-
sampling, there is no longer need to iterate through each pixel in
encoding, but rather compression can be completed chunk-wise. It
is interesting to note, however, there was little significance mea-
sured between spatial downsampling and encoded data throughput,
which would have been expected. Still, the general notion of latency
decreasing with spatial downsampling has promising implications.

4.3 Volumetric streaming pipeline has
feasibility

Considering the system as a whole, measurements of individual
parts do not necessarily imply the feasibility of success. Thus, we
considered a notable bottleneck (upload bandwidth) and full system



Cui et al.

experience (end-to-end latency) in evaluating our system. Very
unexpectedly, there was almost no trend in upload throughput with
respect to temporal downsampling, spatial downsampling, and our
adaptive filter frameworks. This is not all bad news, however, as the
overall upload bandwidth requirement for 3 simultaneous Kinect
streams was under 1 Mbps, a quite reasonable figure.

Figure 6: End-to-end latency measured using millisecond
clock output for multi-camera Kinect streaming; latency is
roughly 600 ms.

Despite the memory benchmark satisfaction, there were still
concerns with latency that were observed. Streaming with a single
camera to a remote client had upwards of 200ms of end-to-end
latency. Using multiple cameras, we measured average end-to-end
latency to be almost threefold at around 550ms. Given patency
of latency greater than 200ms, the tri-Kinect streaming is not up
to commercial standards. Further, streaming using 640x576 depth
resolution or greater led to even more noticeable lag.

5 DISCUSSION
5.1 Key Takeaways
The results were mostly as expected, with temporal and spatial
downsampling optimizing the volumetric streaming pipeline in
different ways. Summarizing the ideas, we found:

• Temporal downsampling decreases throughput, with up-
load bandwidth is maintained at a reasonable sub-1 Mbps
rate.

• Spatial downsampling decreases latency, and end-to-end
latency increases at a rate of about 200ms per additional
Kinect camera.

Beyond these two main concepts, we surmise that the adaptive
filters are a viable tool for ROI framing. Piggybacking off the built-in
Azure Kinect Body Tracking SDK, we have proven the possibility of
creating other relevant bounding box procedures that can be applied
with background downsampling and compression techniques to
reduce data transmission.

5.2 Future Directions
Building on this work, there are many avenues for further devel-
opment. First, resolving the high end-to-end latency issue is a top

priority in making volumetric streaming more feasible. With fur-
ther optimizations and additional novel techniques, it might also
be possible to reduce the upload bandwidth at a controllable rate.
Even without new techniques, progress can be made via deeper
exploration of temporal and spatial downsampling and more com-
prehensive metrics.

Another direction for further research involves modularizing the
volumetric streaming pipeline. Before starting on any developed, we
faced many challenges in integrating the current system onto a new
machine. A systematized manual for setup as well as decoupling of
pipeline processes will enable expedited progress with volumetric
streaming.

Figure 7: Proof-of-concept output in Unity from point cloud
rendering of single Kinect camera streaming.

One final area for future work centers around connecting the
system to data visualization pipelines, like point cloud renderers.
The ultimate goal of having a volumetric streaming system is to
serve as a backbone for VR/AR applications, and now that a proof-
of-concept is working with live video feed, stitching together an
actual volumetric video is next. We started briefly on this work,
and a single camera point cloud stream has been generated, but
more work must be done to calibrate multi-camera point cloud
renderings in a virtual scene for use in projects like Augmented
Coach. modularize pipeline

5.3 Conclusion
Volumetric streaming is a crucial yet challenging aspect of virtual
reality and augmented reality technologies. We implement a volu-
metric streaming pipeline and demonstrate several downsampling
optimizations to reduce the data transmission and time constraints
of this new media format. With this work, we open the door to fu-
ture measurement and optimization of volumetric streaming. Given
its applicability with Augmented Coach and a new wave of tech-
nology, our keystone work will hopefully bring about further study
and a brigther future with VR/AR systems.

ACKNOWLEDGMENTS
We would like to thank Dr. Robert LiKamWa, Jiqing Wen, Aashig
Shaikh, and the METEOR Studio for their support in conducting
this research. Additionally, appreciation goes out to Dr. Suren Jaya-
suriya for organizing the 2023 Visual Media REU program that stim-
ulated the project. Finally, we want to thank the National Science
Foundation for funding the program and its associated research.



Adaptive Volumetric Streaming: Optimizing and Measuring a Multi-Camera Streaming Pipeline

APPENDIX

Figure 8: Temporal downsampling decreases throughput - as refresh rate is increased (equivalent to temporal downsampling
decreasing) data processed per unit time increases. This trend holds true for single Kinect and multi-camera streaming.

Figure 9: Spatial downsampling decreases latency - as background blur is increased (equivalent to spatial downsampling
increasing) delay between execution and output time increases. This trend holds true for all cameras.

Figure 10: Temporal downsampling has no considerable impact on latency; with non-control filters, the decreasing trend is
evident with variable blur factor and not variable refresh rates.

Figure 11: Temporal and spatial downsampling have little effect on upload throughput. As an upper bound, the requirement
for uplaod bandwidth is under 1 Mbps and roughly 200-300 Kbps per Kinect camera.



Cui et al.

REFERENCES
[1] Sameer Channar. 2022. Augmented coach: An augmented reality tool for immer-

sive sports coaching. https://keep.lib.asu.edu/items/165564
[2] Bo Han, Yu Liu, and Feng Qian. 2020. Vivo. Proceedings of the 26th Annual

International Conference on Mobile Computing and Networking (2020). https:
//doi.org/10.1145/3372224.3380888

[3] Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, Yifei
Liu, and Robert LiKamWa. 2021. Rhythmic pixel regions: Multi-resolution visual
sensing system towards high-precision visual computing at low power. Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (2021). https://doi.org/10.1145/
3445814.3446737

[4] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and Hung-Sheng Lee.
2020. Furion: Engineering High-Quality Immersive Virtual Reality on Today’s
Mobile Devices. IEEE Transactions on Mobile Computing 19, 7 (2020), 1586–1602.
https://doi.org/10.1109/TMC.2019.2913364

[5] Junhua Liu, Boxiang Zhu, Fangxin Wang, Yili Jin, Wenyi Zhang, Zihan Xu, and
Shuguang Cui. 2023. CAV3: Cache-assisted viewport adaptive volumetric video
streaming. 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR) (2023).
https://doi.org/10.1109/vr55154.2023.00033

[6] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang,
Lintao Zhang, and Marco Gruteser. 2018. Cutting the Cord: Designing a High-
Quality Untethered VR System with Low Latency Remote Rendering (MobiSys
’18). Association for Computing Machinery, New York, NY, USA, 68–80. https:
//doi.org/10.1145/3210240.3210313

[7] Fabian Mentzer, George Toderici, David Minnen, Sergi Caelles, Sung Jin Hwang,
Mario Lucic, and Eirikur Agustsson. 2022. VCT: A Video Compression Trans-
former. In Advances in Neural Information Processing Systems, Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.
net/forum?id=lme1MKnSMb

[8] Microsoft. [n. d.]. Microsoft/Azure-Kinect-sensor-SDK. https://github.com/
microsoft/Azure-Kinect-Sensor-SDK

[9] Afshin Taghavi Nasrabadi, Aliehsan Samiei, and Ravi Prakash. 2020. Viewport
Prediction for 360° Videos: A Clustering Approach. In Proceedings of the 30th
ACM Workshop on Network and Operating Systems Support for Digital Audio and
Video (Istanbul, Turkey) (NOSSDAV ’20). Association for Computing Machinery,
New York, NY, USA, 34–39. https://doi.org/10.1145/3386290.3396934

[10] Stefano Petrangeli, Gwendal Simon, and Viswanathan Swaminathan. 2018.
Trajectory-Based Viewport Prediction for 360-Degree Virtual Reality Videos. In
2018 IEEE International Conference on Artificial Intelligence and Virtual Reality
(AIVR). 157–160. https://doi.org/10.1109/AIVR.2018.00033

[11] qm13. [n. d.]. Azure Kinect DK Hardware Specifications. https://learn.microsoft.
com/en-us/azure/kinect-dk/hardware-specification

[12] ASUMeteor Studio. [n. d.]. ASUMeteor Studio codebase. https://github.com/asu-
meteor/

[13] Jiqing Wen, Lauren Gold, Jinhan Hu, Alireza Bahremand, Aashiq Shaikh, Char-
maine Farber, Yasser Dbeis, Sameer Channar, Connor Richards, Ryan Hoang,
and et al. 2022. Adaptive 5G systems for interactive volumetric sports analysis
in augmented reality. Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services (2022). https://doi.org/10.1145/3498361.
3538660

https://keep.lib.asu.edu/items/165564
https://doi.org/10.1145/3372224.3380888
https://doi.org/10.1145/3372224.3380888
https://doi.org/10.1145/3445814.3446737
https://doi.org/10.1145/3445814.3446737
https://doi.org/10.1109/TMC.2019.2913364
https://doi.org/10.1109/vr55154.2023.00033
https://doi.org/10.1145/3210240.3210313
https://doi.org/10.1145/3210240.3210313
https://openreview.net/forum?id=lme1MKnSMb
https://openreview.net/forum?id=lme1MKnSMb
https://github.com/microsoft/Azure-Kinect-Sensor-SDK
https://github.com/microsoft/Azure-Kinect-Sensor-SDK
https://doi.org/10.1145/3386290.3396934
https://doi.org/10.1109/AIVR.2018.00033
https://learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://learn.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://github.com/asu-meteor/
https://github.com/asu-meteor/
https://doi.org/10.1145/3498361.3538660
https://doi.org/10.1145/3498361.3538660

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our contributions

	2 Background/Related Work
	3 Methodology
	3.1 Systems overview
	3.2 Pipeline implementation
	3.3 Video compression techniques
	3.4 Metrics

	4 Experimental Results
	4.1 Temporal downsampling decreases throughput
	4.2 Spatial downsampling decreases latency
	4.3 Volumetric streaming pipeline has feasibility

	5 Discussion
	5.1 Key Takeaways
	5.2 Future Directions
	5.3 Conclusion

	References

